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Macrolides represent a large family of protein synthesis inhibitors of great clinical interest due to their applicability to human
medicine. Macrolides are composed of a macrocyclic lactone of different ring sizes, to which one or more deoxy-sugar or amino
sugar residues are attached. Macrolides act as antibiotics by binding to bacterial 50S ribosomal subunit and interfering with
protein synthesis. The high affinity of macrolides for bacterial ribosomes, together with the highly conserved structure of ribo-
somes across virtually all of the bacterial species, is consistent with their broad-spectrum activity. Since the discovery of the pro-
genitor macrolide, erythromycin, in 1950, many derivatives have been synthesised, leading to compounds with better
bioavailability and acid stability and improved pharmacokinetics. These efforts led to the second generation of macrolides, in-
cluding well-known members such as azithromycin and clarithromycin. Subsequently, in order to address increasing antibiotic
resistance, a third generation of macrolides displaying improved activity against many macrolide resistant strains was developed.
However, these improvements were accompanied with serious side effects, leading to disappointment and causing many re-
searchers to stop working on macrolide derivatives, assuming that this procedure had reached the end. In contrast, a recent
published breakthrough introduced a new chemical platform for synthesis and discovery of a wide range of diverse macrolide
antibiotics. This chemical synthesis revolution, in combination with reduction in the side effects, namely, ‘Ketek effects’, has led to
a macrolide renaissance, increasing the hope for novel and safe therapeutic agents to combat serious human infectious diseases.

Abbreviations
CAP, community acquired pneumonia; MIC, minimum inhibitory concentration; MLSB, macrolide–lincosamide–
streptogramin B; NPET, nascent peptide exit tunnel; PTC, peptidyl transferase centre
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Isolation of natural macrolides and their
chemical structure
The first macrolide antibiotic was isolated from a Streptomyces
strain in 1950 and was named pikromycin due to its bitter
taste (from the ancient Greek word pikro meaning bitter)
(Brockmann and Hekel, 1951). The main chemical character-
istic of pikromycin which is common to all later isolated
macrolides is the presence of a macrocyclic lactone ring from
which the macrolide name derives, as proposed by Wood-
ward in 1950 (see Omura, 2002). Macrolide antibiotics are
classified according to the size of the macrocyclic lactone ring
as being either 12-, 14-, 15- or 16-membered ring macrolides
(Figure 1). The majority of macrolides contain amino sugar
and/or neutral sugar moieties connected to the lactone ring
via a glycosylic bond.

Methymycin produced by Streptomyces sp. is the main
representative of the 12-membered macrolides, with only a
few other compounds in this class (Figure 1) (Donin et al.,

1953). Erythromycin (Figure 1) is the best known member
of the 14-membered group and was isolated from the Strepto-
myces erythraeus or Arthrobacter sp. (McGuire et al., 1952).
Oleandomycin (Sobin et al., 1955), lankamycin (Gäumann
et al., 1960) and pikromycin (Brockmann and Hekel, 1951)
(Figure 1) are also important members of this group. The last
group comprises the 16-memberedmacrolides, with the most
important members being tylosin (Hamill et al., 1961),
carbomycin (Wagner et al., 1953) and niddamycin (Huber
et al., 1962) (Figure 1). In addition to the size of the lactone
ring, macrolides can also differ from one another by
containing either a disaccharide or a monosaccharide
attached to the lactone ring.

Almost all macrolides are produced by strains of Streptomy-
ces. However, several species of the genus Micromonospora
were found to produce either 14- or 16-membered macrolides
(Weinstein et al., 1969; Wagman et al., 1972). Because the
antibiotic productivity of Actinomyces isolated from a soil
sample is very low, higher yields were obtained by

Figure 1
Macrolide structures. First generation: 12-membered (methymycin), 14-membered (pikromycin, erythromycin, oleandomycin and lankamycin)
and 16-membered (carbomycin, niddamycin and tylosin), all natural products. Second generation: 14-membered (clarithromycin,
roxithromycin, flurithromycin dirithromycin) and 15-membered (azithromycin). Red colour indicates modifications inserted in the erythromycin
molecule to generate the second generation of 14- and 15-membered macrolides.
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examination of various cultural conditions and by im-
provement of the producing strain using mutational
approaches. Industrial yields of macrolide antibiotics are
presumed to reach 10 mg·mL�1, although the exact details
are not known due to company secrecy. Today, although
the total synthesis of erythromycin has been reported
(Woodward et al., 1981), the fermentation production is
preferred due to higher yields.

In this short review, we describe the historical develop-
ment of macrolides and their mode of action, which has
been completely revised during the past few years. More-
over, all resistance mechanisms that render pathogens
resistant to macrolides and are responsible for their
decreased usage are presented. Finally, the latest develop-
ments that have returned this antibiotic family to the
forefront of science are discussed, leading to the conclusion
that the next-generation macrolide family members will be
highly active with reduced toxicity and will therefore re-
enter the market in the near future.

Antimicrobial activity and chemical
derivatization
In general, macrolide antibiotics are active mainly against
Gram-positive bacteria and have only limited activity against
Gram-negative bacteria (Nakayama, 1984). Macrolides are
very active against Staphylococcus, Streptococcus and Diplococ-
cus Gram-positive bacteria, and among Gram-negative cocci,
Neisseria gonorrhoea, Haemophilus influenzae, Bordetella pertus-
sis and Neisseria meningitis. Additionally, they are also ex-
tremely active against various Mycoplasmas, although there
are some susceptibility differences between 14- and 16-
membered macrolides (Bébéar et al., 1997; Doucet-Populaire
et al., 1998; Morozumi et al., 2008). They have very low activ-
ity against eukaryotes due to their low affinity for binding to
eukaryotic ribosomes (Corcoran, 1984; Böttger et al., 2001).
Additionally, eukaryote rRNAs carry a guanosine in the
equivalent position A2058 of prokaryotes (Böttger et al.,
2001), although this difference is not the only determinant
responsible for the difference in macrolide susceptibility
between yeast and prokaryotes (Bommakanti et al., 2008).

Although macrolides display excellent antibacterial
activity, their generally poor bioavailability, unpredictable
pharmacokinetics and low stability in the acidic pH of the
stomach prompted early searches for new derivatives with
improved properties. This resulted in the second generation
of macrolides, which were semisynthetic derivatives of the
first, natural product, generation. Five derivatives of
erythromycin were developed and marketed, namely,
clarithromycin (Omura et al., 1992), dirithromycin (Counter
et al., 1991), roxithromycin (Chantot et al., 1986),
flurithromycin (Toscano et al., 1983; Gialdroni-Grassi et al.,
1986) and azithromycin (Girard et al., 1987; Retsema
et al., 1987) (Figure 1). Miokamycin (Omoto et al., 1976;
Borzani et al., 1989) and rokitamycin (Sakakibara et al.,
1981) were the only 16-membered second-generation com-
pounds developed for human use (Figure 2). Tilmicosin
(Debono et al., 1989), a semisynthetic derivative of tylosin,
was developed solely for veterinary use (Figure 2).
Clarithromycin and azithromycin are highly marketed

worldwide, whereas dirithromycin (Brogden and Peters,
1994; Kirst, 1995), flurithromycin (Benazzo et al., 1998) and
roxithromycin (Jain and Danziger, 2004) have had a much
more limited distribution.

Clarithromycin and azithromycin were prepared from
erythromycin A in a short, four- to six–step, sequence of
chemical transformations (Morimoto et al., 1984; Bright
et al., 1988). The second-generation erythromycin derivatives
contain all modifications at the C6 or C9 positions of the
lactone ring, thereby preventing the formation of the 9,12-
and/or the 6,9-hemiketal forms, which degrade to spiroketal
inactive derivatives and therefore exhibited immunity to
acid-catalysed inactivation. Clarithromycin is still degraded
under acidic conditions to form such derivatives, albeit at
reduced rates relative to erythromycin A (Nakagawa et al.,
1992; Mordi et al., 2000). The above mentioned second-
generation derivatives (Figures 1 and 2) have each improved
oral bioavailability and increased half-life in plasma,
enabling the oral dosage to be reduced to once or twice a
day (Foulds et al., 1990; Bahal and Nahata, 1992; Piscitelli
et al., 1992; Rodvold, 1999). These compounds also exhibited
enhanced tissue penetration because of their higher
lipophilicities, relative to that of the parent compound
erythromycin A and hence were more effective for treatment
of intracellular pathogens such as H. influenzae (Alvarez-
Elcoro and Yao, 2002). Although the search for the second
generation of macrolides was undertaken with the desire to
discover compounds with expanded spectra and improved
activity, the compounds selected did not exhibit improved
activity against Gram-positive bacteria, and some, in fact,
such as azithromycin had reduced potency compared with
the mother compound erythromycin (Barry et al., 1988,
2001; Fernandes and Hardy, 1988). Nevertheless, they were
selected for development mainly because of their enhanced
pharmacokinetic profiles, in particular, the ability to
accumulate to high levels within lung tissue (Wise, 1989;
Foulds et al., 1990; Retsema et al., 1990; Hardy et al., 1992).
Clarithromycin is also used generally in combination with
other antibiotics, for the treatment of gastric ulcers caused
by Helicobacter pylori and for AIDS-related respiratory
infections caused by the Mycobacterium avium complex
(Haefner et al., 1999).

While the second generation of macrolides provided
solutions with respect to improved pharmacokinetics and
acidic inactivation, they provided few answers with respect
to antibiotic resistance. As macrolide resistance was becom-
ing increasing dangerous, as was happening with all other
antibiotic classes, this prompted research into the develop-
ment of the next generation of macrolides to combat
macrolide resistant strains. This effort yielded the third
generation of macrolides, termed ketolides, where the 3-
keto group in the lactone ring replaces the L-cladinose
present in erythromycin (reviewed by Katz and Ashley,
2005). In addition, nearly all ketolides contained the
addition of a fused 11,12-cyclic carbamate as well as an
alkyl–aryl side chain tethered to different positions of the
lactone ring (Figure 2). Initially, all chemical efforts were
focused on the structure and length of the alkyl–aryl side
chains and the tethering position on the lactone ring.
The first position tethered was the C11 carbon of the
lactone ring (Denis et al., 1999; Putnam et al., 2011),
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although in parallel, C6-tethered ketolides were also pre-
pared (Or et al., 2000; Ma et al., 2001; Wu and Su, 2001;
Plata et al., 2004). Later, a series of C9-oximes ether ketolides
bearing N-aryl–alkyl acetamides were also synthesized,
where the length of the alkyl group differed by up to five
atoms (Iwaki et al., 2005; Nomura et al., 2005; Nomura
et al., 2006). Other structure modifications included the
following: modified 5-O-desosamine ketolides (Chen et al.,
2012), fluorination at the C2- and/or C12 positions (Denis
and Bonnefoy, 2001; Krokidis et al., 2014), variation of the
cyclic carbonate and hydrazono-carbamate at 11,12 posi-
tions (Hunziker et al., 2004; Andreotti et al., 2007; Zhu
et al., 2007) or variation of the aglycon ring (Shaw et al.,
2005; Ashley et al., 2006; Sugimoto and Tanikawa, 2010).
Lastly, modifications also included replacement of
desosamine with different sugars (Liang et al., 2005; Romero
et al., 2005; Chen et al., 2012). A detailed review covering all
the chemical efforts to improve the ketolide activity is
presented in the review of Liang and Han (2013). The only
third-generation macrolide in the market today is
telithromycin (Figure 2), commercialized as Ketek by
Aventis, a 14-membered ‘ketolide’ that was derived from
clarithromycin using eight chemical steps (Denis et al.,
1999). Another ketolide cethromycin (Figure 2) (Ma et al.,
2001) with similar activity to telithromycin was denied
FDA approval in 2009. Lastly, solithromycin (Pereira and
Fernandes, 2011) (Figure 2) is currently undergoing phase

III clinical trials (Farrell et al., 2016) and seems to be the
most promising ketolide.

These ketolides (telithromycin, cethromycin and solith-
romycin) (Figure 2) have outstanding activity against Gram-
positive aerobic pathogens, including macrolide-resistant
strains of Streptococcus pneumoniae (Shortridge et al., 2002;
Farrell et al., 2015). In addition, they display good activity
against some Gram-negative aerobes, such as Moraxella
catarrhalis and H. influenzae, and gratifying activity against
atypical/intracellular CAP pathogens such as C. pneumoniae,
Mycoplasma pneumoniae, and Legionella pneumophila (Bébéar
et al., 1997; Hammerschlag et al., 2001; Fernandes et al.,
2016). Unlike azithromycin and clarithromycin,
telithromycin is not a substrate for the efflux pumps found
in S. pneumoniae and Streptococcus pyogenes and does not in-
duce ribosomal methylation associated with inducible
macrolide–lincosamine–streptogramin B (MLSB) resistance
in Streptococci and Staphylococci (Bryskier, 2000). However,
Staphylococcal and S. pyogenes strains that carry constitutively
methylated ribosomes are not susceptible to telithromycin.
Although rare, ketolide (telithromycin)-resistant strains have
been isolated worldwide (Doern, 2006; Felmingham et al.,
2007). Unlike macrolides, which are considered as time-
dependent bacteriocides, ketolides show concentration-
dependent killing (Zhanel and Hoban, 2002; Woosley et al.,
2010). In addition to the three ketolides mentioned above,
other ketolide compounds have been developed, although

Figure 2
Macrolides structure. Second generation: 16-membered (miokamycin, rokitamycin and tilmicosin). Third generation: ketolides: Telithromycin,
cethromycin and solithromycin. Red and blue colour indicates second- and third-generation macrolides respectively.
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none of them have so far attracted much attention (Fu et al.,
2006; Karahalios et al., 2006; Kouvela et al., 2009; Liang and
Han, 2013; Ruan et al., 2013; Krokidis et al., 2014).

Side effects
Although first and second generation of macrolides were safe
and well tolerated, the third generation of macrolides and
more specifically, the ketolide telithromycin exhibited rare
but serious irreversible hepatotoxicity named ‘Ketek effects’
(Young, 2007; Georgopapadakou, 2014; Telithromycin 2014;
Fernandes et al., 2016). This is why telithromycin use was
restricted and led to pharmaceutical companies focusing on
improving the safety of macrolides. According to Fernandes
and colleagues, it is the pyridine ring included in
telithomycin’s alkyl–aryl-side chain (Figure 2) that blocks
nicotinic acetylcholine receptors, resulting under
specific conditions in serious hepatotoxicity (Fernandes
et al., 2016). Therefore, the first requirement to avoid hepato-
toxicity is the absence of a pyridine ring from the alkyl–aryl
side chain of a new macrolide.

Procedures for development of the next
generation macrolides
A breakthrough in macrolide development and synthesis
occurred last year when Seiple and colleagues presented a
new approach to total synthesis, capable of generating
virtually any kind of macrolide (Seiple et al., 2016). Specifi-
cally, they developed a platform of unprecedented versatility
for the development and synthesis of novel macrolide
antibiotics, employing a design strategy that involved a
multi-convergent assembly of macrolides from simple
chemical building blocks. The assembly utilizes eight initial
building blocks into which they can introduce huge
diversities, and follows a sequence of convergent coupling
reactions to form two fundamental intermediates, which
participate in the next key reaction, the macrocyclization
reaction step (Boeckman and Pruitt, 1989). The success of
macrocyclization is part of the main contribution of this
new procedure because many previous pioneer attempts
had all failed (Seiple et al., 2016). In addition to the modifica-
tions inserted in the initial building blocks, further modifica-
tions are possible either at a later step or after lactone ring
complemention. As a result, a library of macrolide antibiotics
was constructed containing more than three hundred
different compounds. Some of the novel macrolides exhib-
ited high antimicrobial activity against many macrolide-
resistant pathogenic bacteria and are undergoing further
evaluation. Following this new procedure, many compounds
of clinical importance were also obtained, such as
azithromycin, telithromycin and solithromycin, bypassing
the established semisynthetic method of chemical modifica-
tion, which starts from the erythromycin molecule as a
fermentation product. Furthermore, this procedure enables
success in designed macrolide compounds that could not
have been synthesized earlier using the derivatization
method.

Other tools in the macrolide renaissance include the
structure-based drug design procedure (Lounnas et al., 2013)
as well as molecular simulations (Pavlova and Gumbart,
2015; Pavlova et al., 2017) for the optimization of a chemical
structure, both with the same goal of identifying a compound
suitable for clinical testing as a drug candidate. These proce-
dures are based on the knowledge of the three-dimensional
structure of the macrolides and how its shape and charge
cause it to interact with the 50S ribosomal subunit. Lastly,
genetic engineering procedures need to be mentioned,
especially with respect to polyketide synthases (Khosla
and Zawada, 1996; Khosla, 2009; Walsh, 2017), the multi-
enzyme systems responsible for macrolide biosynthesis,
which have substantially increased the potential to develop
new macrolides.

Mode of action
Regardless of whether first, second or third generation, all
macrolide antibiotics bind to the large ribosomal subunit
of the prokaryotic ribosome, occupying a site within the
nascent peptide exit tunnel (NPET) adjacent to the
peptidyl transferase centre (PTC). The binding site of a
diverse range of macrolide antibiotics on different bacterial
(and archeal) ribosomes has been revealed using X-ray
crystallography (Schlünzen et al., 2001; Berisio et al.,
2003; Tu et al., 2005; Bulkley et al., 2010; Dunkle et al.,
2010) (Figure 3). There was initially a controversy
concerning the conformation of the macrolide-bound
lactone ring and the contacts they make with the
ribosome (Schlünzen et al., 2001; Hansen et al., 2002;
Berisio et al., 2003; Tu et al., 2005). However, subsequent
studies using Escherichia coli (Dunkle et al., 2010) and
Thermus thermofilus ribosomes (Bulkley et al., 2010) re-
solved the situation and confirmed that the macrolactone
ring of all macrolides is similarly oriented in the ribosomal
tunnel, regardless of the type of macrolide or the size of
the lactone ring. Macrolides interact with the nucleobase
of A2058 of the 23S rRNA, which involves a hydrogen
bond between the desosamine hydroxyl and the N1 atom
of A2058. In addition, the binding of macrolides is stabi-
lized by tight packing of the hydrophobic face of the lac-
tone ring against rRNA nucleotides 2611 and 2057
(Figure 3C). However, species-specific differences do appear
to exist with respect to macrolides or ketolides bearing the
alkyl–aryl side chain. In the case of telithromycin, this
heterocyclic side chain was observed in different positions
when comparing the drug bound to the archaeal
Haloarcula marismortui 50S subunit (Tu et al., 2005),
Deinococcus radiodurans 50S subunit (Berisio et al., 2003;
Schlünzen et al., 2003), T. thermophilus (Bulkley et al.,
2010) or E. coli 70S ribosomes (Dunkle et al., 2010), as pre-
viously described (Wilson et al., 2005) (Figure 3D).

For a long time, macrolides were considered as general
inhibitors of translation by simply obstructing the ribosomal
exit tunnel and thereby preventing the progress of the
synthesis of the nascent polypeptide chain (Menninger and
Otto, 1982; Tenson et al., 2003; Mankin, 2008). In contrast
to this view, Mankin and coworkers have demonstrated that
the mode of action of these drugs is more complicated
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(Kannan et al., 2012; Kannan et al., 2014; Sothiselvam et al.,
2016). For the majority of proteins, the binding of the drug
within the tunnel does cause synthesis to be aborted when
the nascent peptide chain reaches a nominal length of 5–11
amino acids where prolongation is prevented, leading to
dissociation of the peptidyl-tRNA (drop-off) from the
ribosome (Menninger and Otto, 1982; Menninger, 1995;
Tenson et al., 2003). A small number of short specific nascent
peptides, such as those encoded in the regulatory cistrons of
genes rendering macrolides ineffective, can induce ribosome
stalling by interacting with the NPET. In this case, the
peptidyl-tRNA remains bound, but peptide bond formation
with the arriving A-site bound aminoacyl-tRNA is prevented
(Horinouchi and Weisblum, 1980; Vazquez-Laslop et al.,
2008; Ramu et al., 2011). Moreover, Mankin and coworkers
recently demonstrated that some peptide sequences have
the ability to bypass the antibiotic within the NPET which
leads either to the synthesis of long polypeptides on drug-
bound ribosomes or to the interruption at a later state when
the length of the nascent chain has already passed the
antibiotic binding site (Kannan et al., 2012). Macrolides, such
as erythromycin, appear to allow fewer proteins to bypass
compared with ketolides, such as telithromycin (Kannan
et al., 2012; Davis et al., 2014; Kannan et al., 2014), presum-
ably because erythromycin contains a C3-bound cladinose

sugar (Figure 1) that projects into the lumen of the tunnel
(Schlünzen et al., 2001; Bulkley et al., 2010; Dunkle et al.,
2010).

Ribosome profiling studies have also been used to dissect
macrolide action (Davis et al., 2014; Kannan et al., 2014).
Ribosome profiling or Ribo-seq is a recently developed high-
throughput sequencing technique that allows the identifica-
tion of RNA fragments resistant to RNAse digestion by trans-
lating ribosomes. Therefore, it provides a snapshot of
ribosomal movement on the template mRNA (Ingolia et al.,
2009; Li et al., 2012). A high number of ribosome-protected
fragments mapping to the transcriptome is indicative of
prolonged ribosome occupancy at a given position, also
known as ribosome stalling/pausing. Ribo-seq carried out
recently in Gram-positive and Gram-negative bacteria treated
with different macrolides identified the major sites of late
translation arrest and allowed classification of problematic
sequences for the first time (Davis et al., 2014; Kannan et al.,
2014). Several amino acid motifs favourable to macrolide-
induced arrest were revealed by these studies. The most
dominant motif contained the tripeptide sequence motif
R/K-X-R/K, where R and K denote arginine and lysine amino
acids, respectively, and X represents any amino acid. In vitro
biochemical experiments supported the conclusion drawn
from the mRNA profiling analysis that the ribosome stalls

Figure 3
Interaction of macrolides with the ribosome: (A) Overview of the antibiotic erythromycin (Ery, red) bound to the 70S E. coli ribosome (PDB entry
4V7U; Dunkle et al., 2010). (B) Close-up view of the erythromycin binding site in the ribosomal exit tunnel in the presence of the P-site peptidyl-
tRNA (green) and the A-site tRNA (blue) (prepared with modifications from Wilson 2014). (C) Erythromycin binding pocket within the E. coli 70S
ribosome is located adjacent to bases A2058, A2059, A2503 and U2609. The desosamine amino sugar of Ery at position 5 of the lactone ring
contains a dimethyl amine that makes pivotal contact with the base A2058 (PDB entry 4V7U; Dunkle et al., 2010). (D) Superposition of
telithromycin (Tel) bound to the ribosomes from different species. All structures of ribosome-bound Tel were aligned based on domain V of the
23S rRNA. Note that although the lactone rings almost perfectly match in all cases, the position of the alkyl–aryl groups varies significantly
depending on the species. Shown are Haloarcula marismortui (green, PDB entry 1YIJ; Tu et al., 2005), D. radiodurans (orange, PDB entry 1P9X;
Berisio et al., 2003) and T. thermophilus (blue, PDB entry 4V7Z; Bulkley et al., 2010). All figures were prepared using PyMol software.
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when the codon representing the middle amino acid (X) of
the motif enters the P site. Accordingly, the first residue of
the consensus (R or K) represents the position before the last
amino acid of the nascent peptide chain, whereas the last
consensus sequence residue (also R or K) corresponds to the
amino acid attached to the A site-bound aminoacyl-tRNA
(Davis et al., 2014; Kannan et al., 2014; Sothiselvam et al.,
2014, 2016). These findings suggest that rather than inducing
a universal arrest of protein synthesis, macrolides and
ketolides actually allow translation of only a small subset of
proteins. Taking into account that telithromycin, which is
bactericidal, allows more nascent peptides bypass than eryth-
romycin (which is bacteriostatic), it has been suggested that
an inequity in protein inhibition is more harmful for the cell
compared with uniform inhibition of protein synthesis
(Kannan et al., 2012).

Kinetic analysis of many different macrolides revealed
that most of them act as slow-binding inhibitors (Morrison
and Walsh, 1988). Moreover, while their association rate
constants (kon) are nearly identical, there are large differences
in their dissociation rate constants (koff values). The koff values
for some macrolides are extremely low, in the range of
10�5 s�1, indicating that these macrolides are almost irrevers-
ibly bound to the ribosome (Di Giambattista et al., 1987;
Dinos and Kalpaxis, 2000; Dinos et al., 2003; Krokidis et al.,
2016). Mankin and colleagues have suggested that such very
low macrolide dissociation constants from the ribosome
may also contribute to their bactericidal effect (Svetlov and
Mankin, personal communication).

Champney and co-workers have shown that macrolides
inhibit ribosome assembly (Chittum and Champney, 1995;
Champney and Miller, 2002; Champney and Pelt, 2002),
but this results from a secondary effect due to the inhibition
of synthesis of ribosomal proteins (Siibak et al., 2009). Lastly,
a novel action of macrolides previously unknown is the
promotion of ribosome frameshifting (Gupta et al., 2013).

Macrolide resistance
The two most common resistance mechanisms in the
bacterial pathogens are the reduced binding affinity of the
drug, firstly, due to modification of either the bacterial
ribosome or the antibiotic molecule and, secondly, due to
efflux of macrolides from the bacterial cell, arising via altering
either the membrane permeability or efflux pump expression
(Wilson, 2014; Fyfe et al., 2016). Efflux proteins belong
mainly to Mef and Msr families, and ribosome modification
mechanisms include either ribosomal 23S rRNA or large
ribosomal subunit proteins, while drug-inactivating mecha-
nisms include phosphorylation of the 20-hydroxyl of the
sugar by phosphotransferases and hydrolysis of the macrocy-
clic lactone by esterases.

Mef family
Mef pumps are proteins that are members of the major
facilitator superfamily, consisting of 12 transmembrane
domains linked by hydrophilic loops (Pao et al., 1998). Mef
pumps work as antiporters, exchanging the bound macrolide
with a proton (Law et al., 2008).mef genes are found in Gram-
positive bacteria but have also been reported in some Gram-

negative species (Ojo et al., 2004). There are two major
subclasses, mef(A) and mef(E). Although there is higher than
80% homology, they are carried on distinct genetic elements.
Both genes confer resistance to 14- and 15-membered, but
not to 16-membered, macrolides, lincosamides and strepto-
gramins B, affording the so-called ‘M phenotype’ but not
the ‘MLSB phenotype’. mef(E), as well as the Staphylococcus
aureus msr(A) family of genes, carries an adjacent ATP-binding
cassette-type transporter gene known as themsr(D) gene. Msr
(D) and Mef(E) co-expression is required for high-level
macrolide resistance in S. pneumoniae, and both proteins
interact synergistically to increase macrolide resistance in E.
coli (Nunez-Samudio and Chesneau, 2013). Recently,
additional mef genes were described, namely, mef(B) and mef
(E), with medium homology to mef(A) and mef(I), as well as
mef(O) with high homology to mef(A) (see Fyfe et al., 2016).
mef genes are regulated by transcription attenuation, with
the induction of the mef(E)/msr(D) operon occurring by
anti-attenuation of transcription in the presence of
inducing macrolides. There is also evidence, however, that
an additional regulation mechanism is existing with a leader
peptide encoded upstream of mef(E) (Subramaniam et al.,
2011; Chancey et al., 2015).

Msr family
These proteins displace macrolide antibiotics from the
ribosome, offering ribosome protection by binding and
chasing the bound drug from the ribosome (Sharkey et al.,
2016; Wilson, 2016). There are four classes of Msr proteins,
namely, types A, C, D and E, with each class having an ATP-
binding motif and sequence homology with the ATP-binding
superfamily (Ross et al., 1990). The Msr family confer
resistance to 14- and 15-membered macrolides and low level
to ketolides (Ross et al., 1995; Canton et al., 2005; Reynolds
and Cove, 2005; Vimberg et al., 2015). The msr genes related
to macrolide resistance have been isolated from Staphylococ-
cus epidermidis (Ross et al., 1990), Staphylococcus xylosus
(Milton et al., 1992), St. aureus (Matsuoka et al., 1999, 2003),
Enterococcus (Portillo et al., 2000), Streptococcus (Varaldo
et al., 2009), Pseudomonas and Corynebacterium (Ojo et al.,
2006). For a long time, the Msr family was thought to confer
macrolide resistance by acting as efflux pumps (Fyfe et al.,
2016). Now, it seems that these proteins act in a similar way
to TetM/TetO proteins, chasing the bound macrolide from
the ribosome (Sharkey et al., 2016; Wilson, 2016). Tet(M)
and Tet(O) are paralogs of the translational GTPase EF-G
and remove tetracycline from the ribosome in a GTP
hydrolysis-dependent manner causing tetracycline (not
macrolides) resistance (Burdett, 1996; Connell et al., 2003).

23S rRNA modification
Gram-positive bacteria, as well as E. coli, can acquire genes
that modify the 23S rRNA and confer high-level MLSB
resistance to macrolides, lincosamides and some members
of the streptogramin B family (Weisblum, 1995a, 1995b;
Roberts et al., 1999). The genes encode methyltransferase
enzymes that either mono- or di-methylate the N6 position
of nucleotide A2058 (E. coli numbering) of the 23S rRNA (Katz
et al., 1987). The enzyme class was named Erm for erythromy-
cin resistance methylase, and individual genes as ermA, ermB,
etc. (Roberts et al., 1999). The erm genes have been found on
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high- and low-copy plasmids and within transposons, usually
in association with other genes responsible for resistance ex-
pression to other antibiotics (Alekshun and Levy, 2007). The
ermE gene from the erythromycin-producer Saccharopolyspora
erythraea has been found in commercial preparations of the
drug, causing one to wonder whether resistance in clinical
isolates originated from the producing strain and whether it
was spread directly because of drug usage (Webb and Davies,
1993, 1994). Some of the enzymes, such as ErmN, catalyse
only monomethylation (Liu and Douthwaite, 2002), whereas
others, such as ErmE (Katz et al., 1987) and ErmC (Denoya
and Dubnau, 1989), catalyse dimethylation, but it is not
known whether dimethylation takes place through a
concerted two-step process since these latter enzymes can
use monomethylated RNA as a substrate. Moreover, induc-
tion is dependent upon the presence of the antibiotic with
the correct structures of a 14- or 15-membered macrolides
that contain a neutral sugar at C3. In contrast, 16-membered
macrolides and 14-membered-ketolides are not inducers.
Erm-mediated resistance exists in two forms: inducible and
constitutive. In the inducible form of resistance, the
ribosomal methylation is established only after the macrolide
is transported into the cells (Ramu et al., 2009). In hosts that
are constitutively resistant to macrolides, Erm-catalysed
methylation of the ribosomes does not require the presence
of the macrolides (Poehlsgaard and Douthwaite, 2003). Both
inducible and constitutive MLSB resistance require the
complete sequence encoding the erm gene (Weisblum,
1995a, 1995b).

Recently, it was shown that the tunnel acts as a regulatory
compartment where the sequence of the nascent peptide acts
together with the drug to slow the rate of translation
elongation or even stop translation completely (Otaka and
Kaji, 1975; Tenson et al., 2003; Davis et al., 2014; Kannan
et al., 2014). A number of genes regulated by recognition of
the nascent peptide have been identified in bacteria and
eukaryotes (see Wilson et al., 2016). The inducible macrolide
resistance genes remain silent in the absence of the antibiotic
but are activated in its presence. Activation of the inducible
gene is regulated by ribosome stalling at a precise position
on programmed, evolutionarily defined site of the regulatory
upstream open reading frame (uORF), which precedes the
resistance gene (Weisblum, 1995a, 1995b; Ramu et al., 2009;
Subramaniam et al., 2011). The ribosomes, which are arrested
at the uORF of the regulatory gene, alter the folding of the
mRNA, activating the expression of the downstream
resistance cistron (Figure 4). The chemical structure of the

antibiotic and the sequence and/or the structure of the leader
peptide are the two main factors that regulate the position of
translation arrest on the mRNA of the leader peptide
(Gryczan et al., 1980; Horinouchi and Weisblum, 1980;
Vazquez-Laslop et al., 2008, 2010; Ramu et al., 2011; Arenz
et al., 2014a, 2014b). As mentioned above, the amino acid
sequence motif R/K-X-R/K was recognized as one of the major
motifs that induce translation arrest in the presence of
macrolides (Davis et al., 2014; Kannan et al., 2014). The R/K-
X-R/K motif has been detected in many regulatory uORFs of
macrolide resistance genes, including also the ermDL ORF
that controls expression of the ermD gene that has been
studied extensively (Kwak et al., 1991; Kwon et al., 2006;
Sothiselvam et al., 2014). Many regulatory peptides like
ermCL and ErmBL do not feature this motif and direct
translation arrest via distinct stalling sequences (Wilson,
2016). Ketolides which do not induce ribosome stalling at
the uORF of the ermC resistance gene trigger its translation
through frameshifting, allowing so the translating ribosome
to invade the intergenic spacer (Gupta et al., 2013). In all
tested regulatory uORFs with the R/K-X-R/K motif, the
ribosome stalls when the second codon of the consensus
enters the ribosomal P site (Sothiselvam et al., 2014; Almutairi
et al., 2015). RNA chemical probing has shown that binding
of macrolides to the NPET of the vacant ribosome was
sufficient to allosterically induce structural changes in the
PTC (Sothiselvam et al., 2014, 2016). This is confirmed by
Mankin’s experiments where translation of the 50terminally
truncated ermDL ORF, which encodes the peptide starting
with the MRLR (methionine–arginine–leucine–arginine)
sequence, was efficiently arrested by macrolides at the third
codon responsible for leucine, when the length of the
nascent peptide chain was only three amino acids and is
predicted to establish only limited contacts with the drug
(Sothiselvam et al., 2014). These results suggested that the
inhibition of translation elongation by macrolides does not
block the progress of the nascent chain in the drug-engaged
exit tunnel but rather that binding of the antibiotic
allosterically modifies the PTC which is unable to catalyse
peptide bond formation when certain combinations of donor
and acceptor substrates have occupied the A- and P-sites
(Kannan et al., 2014; Sothiselvam et al., 2014, 2016).
Additionally, the efficiency of stalling by a minimal MRLR
sequence allowed Mankin and colleagues to conclude that
the amino acids preceding the stalling motif in the ErmDL
peptide do not make a significant contribution to the transla-
tion arrest. Rather, the length of the side chains and the

Figure 4
Regulation of gene expression by ribosomal stalling. In the absence of erythromycin, there is no stalling and no translation of ermC. In the
presence of erythromycin, there is stalling during translation of the leader peptide ermCL, which causes the ribosome to block stem-loop
formation and exposes the ribosome binding site (RBS) of the downstream cistrons, allowing its expression. (Figure was prepared with modifica-
tions from Wilson et al., 2016).
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positive charge of the amino acids occupying the A- and P-
sites appear to be more important for the efficiency of stalling
(Sothiselvam, 2016). Such an allosteric modification of PTC
after macrolide binding on the ribosome was presented many
years before, when addition of erythromycin in a mixture of
ribosomes with bound radioactive chloramphenicol caused
complete release of the latter despite the apparent lack of
overlap in the binding sites of the two antibiotics (Pestka
and LeMahieu, 1974; Dunkle et al., 2010).

Mutations in ribosomal RNA
All published data indicate that A2058 is the key nucleotide
of the 23S rRNA for macrolide resistance (Vester and
Douthwaite, 2001; Canu et al., 2002; Berisio et al., 2006).
The mutation A2058G confers high-level resistance to all
macrolides including many ketolides (Vester and
Douthwaite, 2001; Canu et al., 2002; Misyurina et al., 2004;
Berisio et al., 2006). The exception is S. pneumonia where the
A2058G mutation confers resistance to macrolides but low
level to ketolides (Canu et al., 2002; Farrell et al., 2003). This
unusual behaviour is explained by the 2057–2611 base pair,
which is part of the cradle housing the lactone ring of the
macrolide (Pfister et al., 2005; Kannan and Mankin, 2011).
The 2057–2611 base pair is conserved across bacteria (Akshay
et al., 2011), and the polymorphism of this base pair (i.e. the
presence of G-C vs. A-U) determines the ketolide susceptibil-
ity of A2058G mutants (Pfister et al., 2005). Another
resistance mutation occurs at the A2059 position and has
been found in vivo in Mycobacteria, Propionibacteria, H. pylori
and S. pneumoniae (Vester and Douthwaite, 2001). Mutations
at position 2057 have also been observed in clinical isolates
although with a limited frequency (Fyfe et al., 2016). The
U2609C mutation in E. coli was selected for resistance to
telithromycin and cethromycin (Garza-Ramos et al., 2002).
In E. coli, nucleotides A752 and U2609 form a base pair that
connects domains II and V in the 23S rRNA (Schuwirth
et al., 2005). In the E. coli 70S-telithromycin structure
(Dunkle et al., 2010), this base pair offers a surface for the
alky–aryl arm to engage in stacking interactions that favour
drug binding. The protection of A752 from chemical probing
by telithromycin therefore most likely arises through
stabilization of the A752–U2609 base pair. The C6 alkyl–aryl
side chain of cethromycin bound to the D. radiodurans
50S subunit adopts a distinct conformation compared with
that observed in E. coli, most likely because D. radiodurans
has C752 instead of A752 and therefore cannot form a
canonical base pair with U2609 (Figure 3D) (Vester and
Douthwaite, 2001; Schlünzen et al., 2003; Franceschi
et al., 2004). Additional mutations in S. pneumoniae have
been reported, namely, C2610U and C2611U, that also
confer macrolide resistance, whereas deletion of A752
results in high resistance to both macrolides and ketolides
(Canu et al., 2002).

Mutations in ribosomal proteins
Mutations in genes encoding ribosomal proteins L4 and L22
can confer erythromycin resistance and reduce telithromycin
susceptibility (Tait-Kamradt et al., 2000a; Pihlajamaki et al.,
2002). In addition to E. coli laboratory isolates, a variety of
clinical isolates have also been identified with ribosomal
protein mutations that confer resistance to macrolides,

including S. pneumoniae (Tait-Kamradt et al., 2000a, 2000b;
Farrell et al., 2004), S. pyogenes (Bingen et al., 2002), St. aureus
(Prunier et al., 2005), H. influenzae (Peric et al., 2003) and My-
coplasma genitalium (Shimada et al., 2011). In addition to the
changes detailed below, a list of L4 and L22 mutations can
be found in Franceschi et al. (2004). Changes within a highly
conserved sequence of S. pneumoniae L4 (63KPWR-
QKGTGRAR74), resulted in decreased susceptibility to
macrolides or ketolides (a 500-fold increase to a telith-
romycin MIC of 3.12 mg·mL�1 for one variation), as well as
a reduction in fitness (Tait-Kamradt et al., 2000a, 2000b;
Farrell et al., 2004). Mutations encoding amino acid changes
in the C-terminal region of ribosomal protein L22 (e.g.
G95D, P99Q, A93E, P91S, G83E, A101P and 109RTAHIT114

tandem duplication) also led to decreased susceptibility to
macrolides and ketolides, although theMICs were not greater
than 1 mg·L�1 in S. pneumoniae (Farrell et al., 2003). In M.
pneumoniae, all 14-membered macrolide-resistant isolates
harboured a T508C mutation in L22, and for most, either an
A2058G or A2059G mutation in 23S rRNA was also present
(Cao et al., 2010; Jensen et al., 2014). Resistance to
telithromycin in S. pneumoniae significantly increases when
23S rRNA methylation/mutations are combined with ribo-
somal protein mutations. For example, a combination of a
truncated leader peptide leading to constitutive synthesis of
erm(B) conferred a telithromycin MIC of 16 mg·L�1 (Wolter
et al., 2008), whereas clinical isolates with both a constitutive
erm(B) and a 69GTG71 to TPS substitution in L4 (Wolter et al.,
2007), or a combined A2058G mutation and a three-amino
acid deletion in L22 (Faccone et al., 2005), provided high-
level telithromycin resistance (256 mg·L�1). It is also
important to mention that, since all previous protein
mutation positions are rather distal from the macrolide bind-
ing pocket (9–10 Å), it was concluded that resistance may be
triggered by induction of structural changes in the rRNA
nucleotides that propagate to the binding pocket of the
antibiotics (Tu et al., 2005).

Modification by macrolide esterases
Macrolide aglycons are converted to cyclic lactones via an
ester bond that is formed during the final ring synthesis step
and is catalysed by the thioesterase activity module of the
polyketide synthase, responsible for the ring closure step that
generates 6-deoxyerythronolide B (Donadio et al., 1991). It is
therefore expected that this key bond would have been
targeted by macrolide resistance enzymes operating by
reversing the ring closure reaction. The first erythromycin
esterase was reported in 1984 and was isolated from a
macrolide-resistant E. coli strain (Barthelemy et al., 1984;
Wright, 2005). Cloning of this ereA gene revealed a protein
of 406 amino acids with an expected mass of 44.8 kDa
(Ounissi and Courvalin, 1985). Subsequently, another
orthologue, ereB, was cloned from another E. coli isolate
(Arthur et al., 1986). Ere(A) and Ere(B) both hydrolyze the
lactone ring in 14-membered macrolides; however, the two
enzymes are only weakly related with 25% protein sequence
identity. Through the use of a genomic enzymology
approach, the catalytic mechanisms of the ‘erythromycin
esterase superfamily’ enzymes were compared (Morar et al.,
2012). Ere(A), Ere(B) and two related enzymes from Bacillus
cereus, Bcr135 and Bcr136, whose three-dimensional
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structures had previously been determined, were studied.
Only Ere(A) and Ere(B) were predicted to cleave the macrocy-
clic ester, and their resolved enzymic hydrolytic mechanism
was shown to pass through an hemiketal intermediate, while
Bcr136 was confirmed as an esterase that is, however, unable
to inactivate macrolides (Morar et al., 2012). The presence of
these genes on mobile genetic elements implies the ability
to become widespread in the microbial community, and the
presence of esterases has been confirmed in at least one
clinical isolate of St. aureus (Wondrack et al., 1996) and in
environmental isolates of Pseudomonas sp. (Kim et al., 2002).
Hydrolytic inactivation of macrolides by esterases specifically
involves 14- and 15-membered macrolides, whereas ketolides
and 16-membered macrolides, such as josamycin, mide-
camycin, rosaramycin and spiramycin, are not substrates
(Arthur and Courvalin, 1986; Arthur et al., 1987; Morar
et al., 2012).

Modification by kinases
(or phosphotransferases)
Macrolide phosphotransferases are macrolide-inactivating
enzymes widespread in Gram-negative and Gram-positive
bacteria (Sutcliffe and Leclercq, 2002; Roberts, 2008; Fyfe
et al., 2016) that, by in silico analysis, are classified in the same
family as aminoglycoside and macrolide protein kinases
(Shakya and Wright, 2010). The first reported purifications
of macrolide phosphotransferases were from macrolide-
resistant E. coli, and this mechanism was soon shown to be
prevalent in clinical isolates of E. coli Tf481A, in Japan (O’Hara
et al., 1989; Kono et al., 1992; Taniguchi et al., 2004). Macrolide
20-phosphotransferases, commonly found on mobile genetic
elements, are inducible (e.g.mph(A)) or constitutively expressed
(e.g.mph(B)) intracellular enzymes capable of transferring the γ-
phosphate of nucleotide triphosphate to the desosamine 20-OH
group of 14-, 15-, and 16-membered ring macrolide antibiotics,
thereby disrupting the key interaction ofmacrolideswithA2058
(Shakya and Wright, 2010). Mphs can be divided into two
classes distinguished by differences in primary sequence and
substrate specificity, while their structures in complexes with
manymacrolides have been resolved in atomic resolution (Fong
et al., 2017). Although early studies showed that Mph enzymes
could use ATP, more recent work with Mph(A) has demon-
strated a preference for GTP under physiologically relevant
in vitro assay conditions (Shakya and Wright, 2010). Expres-
sion of mph(A) is induced by erythromycin, and recently, the
structure of the MphR(A) repressor protein, a negative regula-
tor of mph(A) expression, was solved, uncomplexed and
complexed with erythromycin to 2.00 and 1.76 Å resolutions
respectively (Zheng et al., 2009). Erythromycin binds with a
stoichiometry of 1:1 to each monomer of the functional
MphR(A) dimer in a large hydrophobic cavern composed of
residues from an α-helix of one monomer and the dimeric
interface of the other monomer that appears too close around
the ligand as it binds (Zheng et al., 2009). Macrolide
phosphotransferases are widespread in bacteria of clinical,
veterinary, agricultural and environmental origins. Genes
encoding Mph enzymes are usually found on mobile genetic
elements containing other macrolide resistance genes and
genes conferring resistance to other antibiotic classes. The
most recently identified macrolide phosphotransferase, mph

(G), has been found in Vibrio spp. and photobacteria in the
seawater of fish farms (Nonaka et al., 2015).

Glycosyltransferases modification
Glycosyl transfer is not a widespreadmechanism of antibiotic
resistance, although it certainly plays an important role in
self-protection of antibiotic-producing organisms. Therefore,
the antibiotic does not strongly interfere with the synthesiz-
ing machineries or the producer organism, which explains
why not all antibiotic producers are resistant against their
produced drug. Macrolide resistance due to 2 -glucosylation
has not been reported yet in a bacterial pathogen but has
been found in Streptomyces antibioticus, which produces the
known macrolide oleandomycin (Vilches et al., 1992; Fyfe
et al., 2016). In this macrolide self-resistance mechanism,
the intracellular glycosylation inactivates the antibiotic, and
after secretion is reactivated by an extracellular-glycosidase
(Vilches et al., 1992). The glycosylation of macrolides is
mediated by glycosyltransferases, which transfer activated
donor sugars to acceptor species. These enzymes are grouped
into families based on their sequence, and to date they
display only two major folds defined as GT-A and GT-B
(Lombard et al., 2014). The oleandomycin inactivation takes
place by transfer of a glucose molecule from a donor/UDP-
glucose to oleandomycin, a process catalysed by an
intracellular glucosyl transfer (Quirós and Salas, 1995). The
extracellular glucosidase that activates oleandomycin, OleR,
converts the glycosylated form of oleandomycin into the
active antibiotic (Quirós et al., 1998). Two glycosyltransferase
proteins OleI and OleD and one glucosidase OleR were
isolated and studied from S. antibioticus, and a model was
proposed for oleandomycin intracellular inactivation,
secretion and extracellular reactivation (Quirós et al., 1998).
Unlike OleI, which only glycosylates oleandomycin, OleD
displays broad acceptor specificity and hence will inactivate
a wider spectrum of macrolide antibiotics, including also
tylosin and erythromycin (Coutinho et al., 2003).

Conclusions
The resistance of pathogens to antibiotics has become a
serious and persistent therapeutic problem today, with a
rapid development of new effective and safe antibiotics being
the only answer to this problem. Macrolides are a family of
valuable first choice antibiotics with great contribution to
therapy, which is gradually becoming ineffective due to
increasing resistance. Thus, the development of new
generations of macrolides is required, as soon as possible.
Additionally, this development has to be associated with
safety issues to overcome problems related to the use of the
last generation of macrolides (Kim et al., 2012; Telithromycin,
2014). In the beginning of the previous decade, there was a
revolution concerning the development of new macrolides
and a great enthusiasm prevailed after approval of
telithromycin by the FDA. However, telithromycin usage
was accompanied by serious side effects. This led to
disappointment and caused many researchers to stop
working on macrolide derivatization, assuming that this
procedure had reached the end. In parallel, the discovery of
modular macrolide polyketide synthases initiated efforts to
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alter the specificities and activities of the enzyme domains,
for the purpose of changing the structure of the correspond-
ing aglycone and/or the linked sugars (Khosla and Zawada,
1996; Khosla, 2009). This procedure permitted recombinant
genes to be introduced into the macrolide producers in order
to create desired changes to the structure of macrolides
produced (Katz and McDaniel, 1999; McDaniel et al., 2005).
The few fully elaborated novel macrolides produced by
genetic engineering have not yet fulfilled the original
promise (Park et al., 2010). Therefore, it is still too early to
assess whether this avenue of discovery will be effective.
The findings that many of engineered PKSs either do
notproduce the expected compounds, or do so at levels too
low to be useful, indicate that greater understanding of the
biochemical details of polyketide biosynthesis is required
before full exploitation of their chemical potential can be
realized. Fortunately, this inability of genetic manipulation
to rapidly produce new compounds designed on the huge
amount of available crystal structure data has been recently
overcome by chemical macrolide synthesis procedures,
which have opened new horizons into the synthesis of novel
macrolide compounds (Seiple et al., 2016). On the other
hand, the recent resolution of the ‘ketek effects’ also provided
answers to the second critical issue, namely, the safety of
macrolides in clinical use (Andrade and Tulkens, 2011;
Fernandes et al., 2016), and therefore, macrolide antibiotics
are back in the forefront of science, and new, important,
effective and safe macrolides are expected very soon to re-
enter the market.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked
to corresponding entries in http://www.guidetopharma-
cology.org, the common portal for data from the IUPHAR/
BPS Guide to PHARMACOLOGY (Southan et al., 2016), and
are permanently archived in the Concise Guide to PHARMA-
COLOGY 2015/16 (Alexander et al., 2015a,b).
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